

Barcoded Sample Tracking and ICPMS Analysis of High Purity Semiconductor Grade Chemicals

sampleTRAX SF

sampleTRAX SF is an advanced, automated sample identification system that uses barcodes to track samples from time of collection through reception to final analysis and data reporting. Direct analysis of semiconductor grade chemicals by ICPMS at less than 1 ppt are achieved with sampleTRAX SF.

Fully Automated Sample Identification and Tracking for Ultra-Pure Chemicals

An integrated barcode reader scans the bottom of a PFA bottle to identify sample information before analysis.

Synchronizing the patented barcode reading arm with the sample probe ensures each sample is positively identified at the time of analysis. The enclosed ultra-pure autosampler guarantees sample integrity is not compromised.

How it Works

sampleTRAX SF analytical station automatically:

- 1. Scans bottles
- 2. Groups samples by chemical type
- 3. Analyzes grouped chemicals in a user-defined order
- 4. Performs wash method specific to each chemical type after each group is analyzed
- 5. Generates and reports data

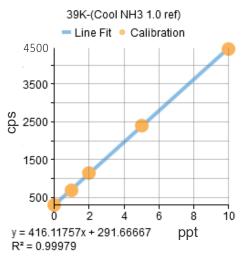
sampleTRAX SF Analytical Station

Sample Identification

- Barcode scanning accesses information including:
- Sample type
- Sample Information (Line / Sampling point / Name / etc.)
- Method of standardization and analysis
- QC Protocol

Ultra Pure

- Automated capping and recapping of bottles and vials
- Ultra-clean
- <1 ppt semiconductor metals</p>
- Automated matrix matched MSA, addition or external calibration
- Analytical stations for ICPMS instruments


Laboratory Automation

- Bottle tracking
- Bottle history (cleaning, sample, chemical, analysis, concentration)
- Chemical grouping
- Chemical specific rinse function per chemical
- Customized network, bottle cycle
- Data management

250 mL bottle with 2D bottom, 2D cap and 1D side barcode

Autocalibration of ³⁹K from a **Single Stock Solution**

^{*} All calibration strategies automated (MSA, Addition. External)

Barcoded Bottles

TRAX Scan Stations

1D and 2D Barcodes Permanently Marked Into Inert PFA

Benefits

- Chemically inert barcodes
- Non-contaminating markings into acid-resistant PFA
- Reusable
- 2D barcoded bottles are compatible with sampleTRAX SF scanning automation systems
- Track bottle position and sample identity
- Precleaned

Types

- Bottles and vials
- 2D bottom barcoded
- 1D side barcoded
- Caps
 - Available with 2D barcodes

60 mL vial

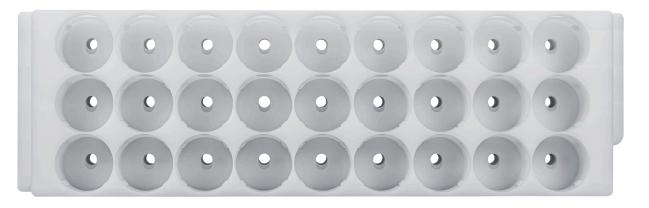
Scan stations are used to associate sample and analytical information with the bottle's barcode.

Select Sample Type	ן
H2O2	
NH4OH	1.) Select sa
DSP	
DHF	
SC1	
IPA	
🗌 н2504	
HF	sample Datab
	1
	to t
	1º

Multiple scan stations can be used to track bottle usage both in the fab and the laboratory.

- Bottle Status
- Chemical
- Comments/notes
- Customizable inputs

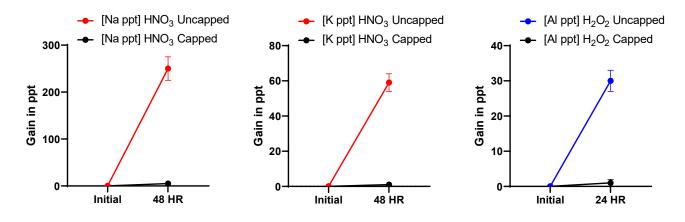
Fluorocapper

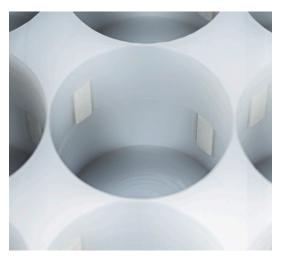

Fluorocapper Racks

Automated capping and recapping of bottles and vials

Fluorocapper for sample cap removal

- More stringent control over contamination
- Reduced exposure of operators to dangerous chemicals
- Elimination of sample evaporation
- · Elimination of gas-phase reactions of adjacent sample bottles

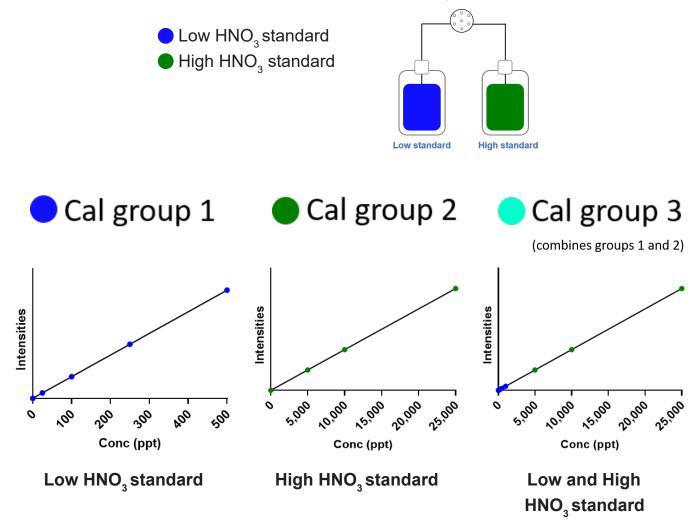

Automatic Locking Racks


Fluorocapper racks for 100 mL and 250 mL bottles or 60 mL vials

- Automated capping and recapping of bottles and vials
- Automated locking and unlocking of bottles and vials
- Scanning hole for each bottle or vial
- Reduced exposure of operator to samples

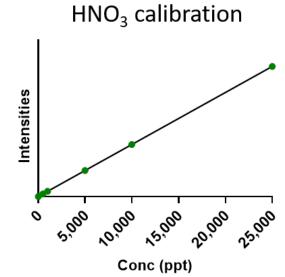
Fluorocapper reduction of environmental contamination

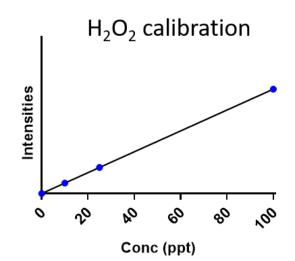
Accumulation of environmental contamination in uncapped bottles


Multi-standard Selector

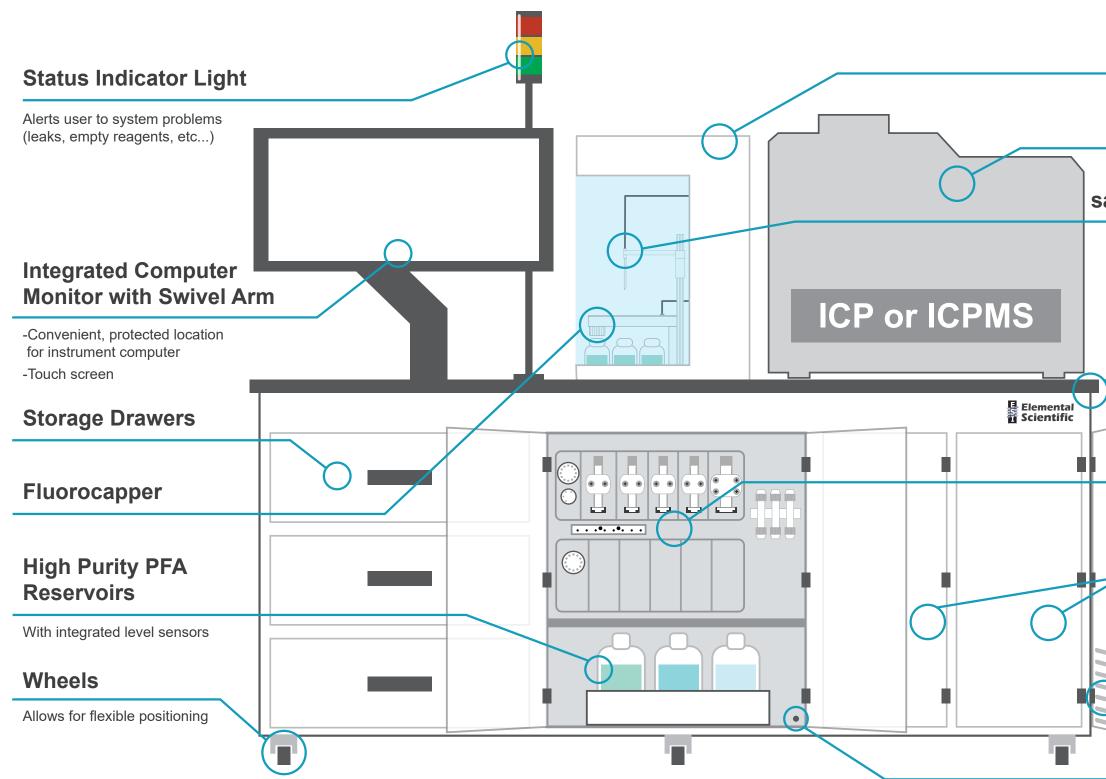
Multi-standard Features

• Up to four different calibration standards for matrix-matched calibrations without the need for switching or priming standards


- Generate "extended-range" calibrations of 1 curve from multiple bottles
- · Multi-elemental calibration from stocks with
- Different matrixes
- Different elements
- Different concentration


Stand-alone or Extended-range Calibrations

Up to 4 Different Calibration Standards Consecutively



HNO₃ standard HCL standard H₂O₂ standard H₂SO₄ standard **HCL** calibration Intensities 200 00 0 200 100 500 Conc (ppt) H₂SO₄ calibration Intensities 200 600 800 1,000 400 0 Conc (ppt)

sampleTRAX SF Analytical Station

Ultra-clean Enclosure Exhausted with Air Shower

With exhaust vents and inert-gas air shower

ICP or ICPMS

sampleTRAX SF Autosampler

With barcode scanning and PFA probe and Fluoronetics rail

Inert, Acid-Resistant HDPE Countertop

Integrated prep*FAST* S System

With ultra high purity syringes and valves

Storage Areas

Vacuum Pump Storage Chamber

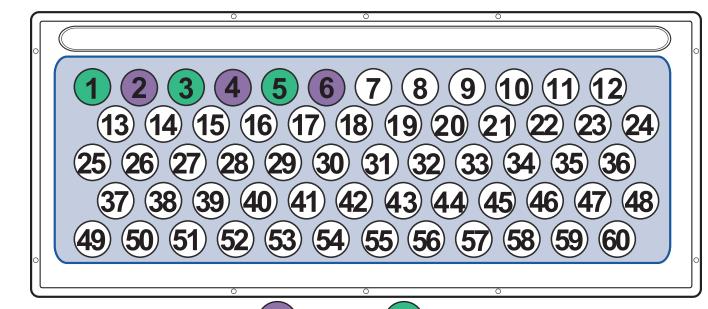
With pull out drawer for easy access

Leak Sensors

Detects leaks and alerts user

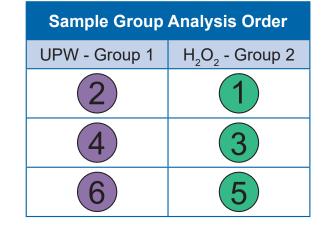
Automated Grouping and Wash

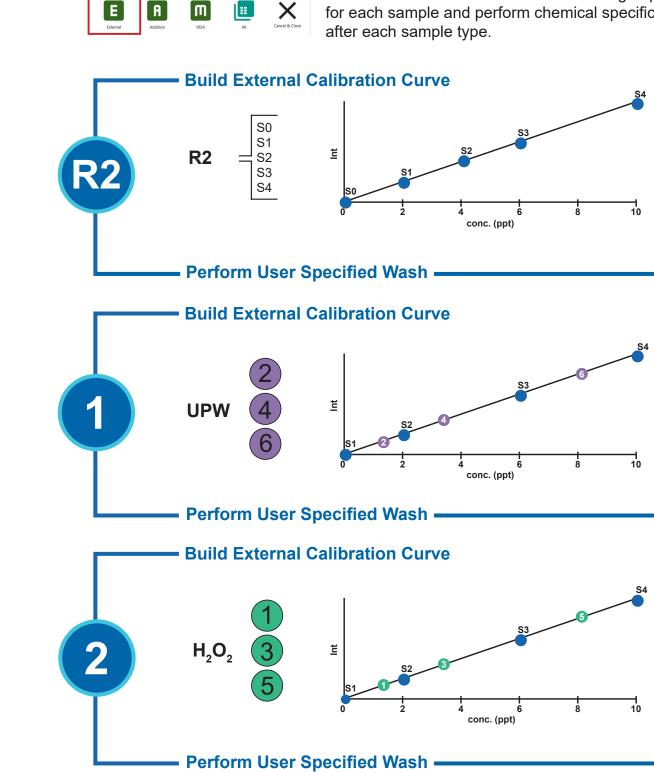
External Cal Sequence


sampleTRAX SF Analytical Station simplifies and performs the most demanding sample analysis in 3 easy steps.

- 1. Discover and group samples
- 2. Create a sequence, a) MSA, b) Addition Cal, c) External Cal.
- 3. Run samples, acquire data and calculate results

1) Discover Samples


sampleTRAX SF discovers sample location and analytical information.


UPW

Group Samples

Based on discovered sample information, the sequence groups samples by type and sorts by analytical order. Chemical specific washes are performed after each group.

 H_2O_2 *Sample types discovered

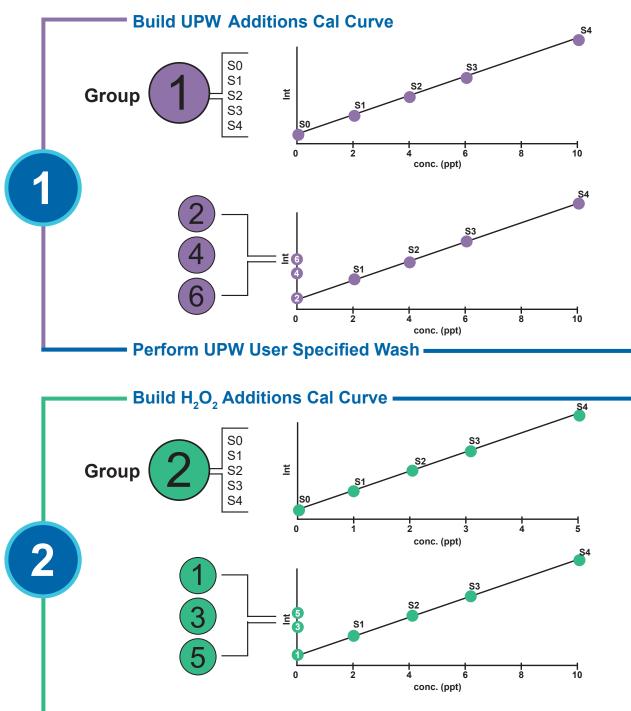
.

Π

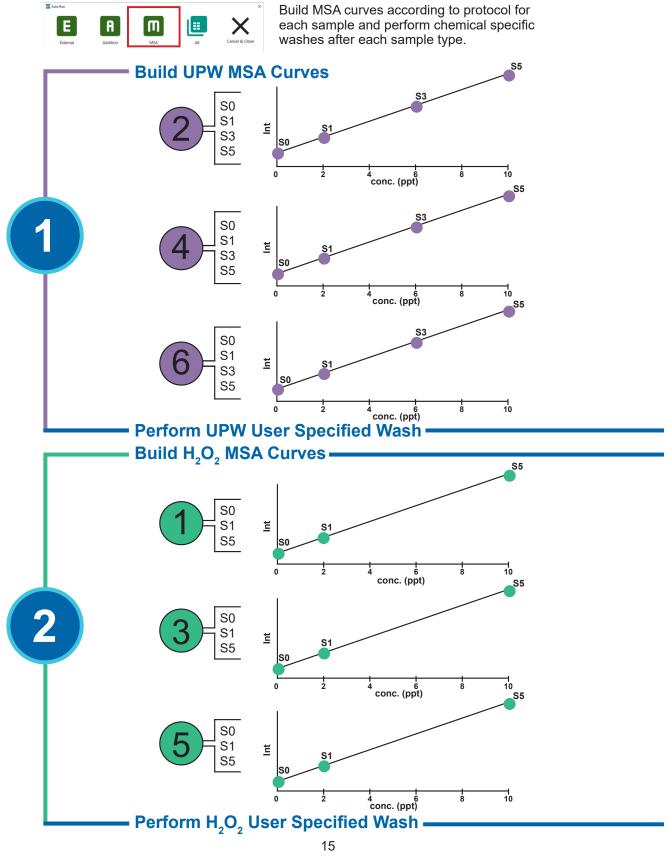
X

2a) Select Desired Sequence Type

Build External calibration curves according to protocol for each sample and perform chemical specific washes


Addition Cal Sequence

MSA Sequence

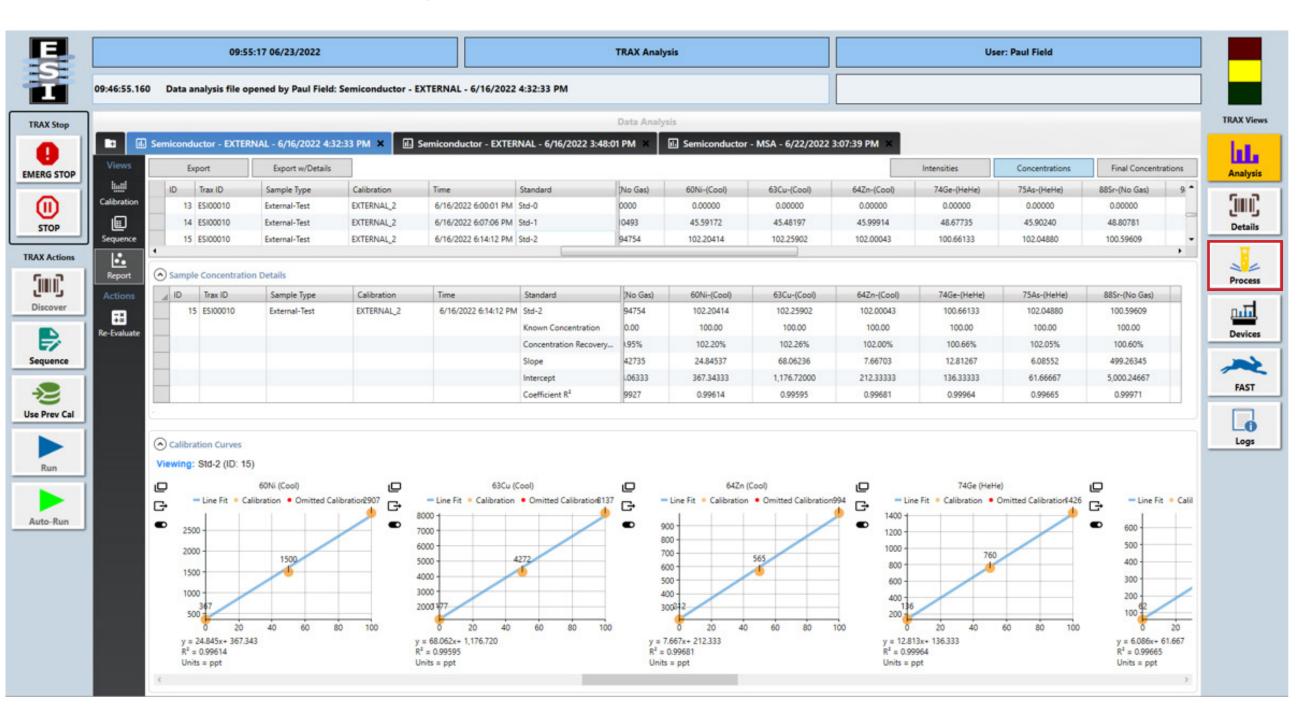

2b) Select Desired Sequence

Build Addition calibration curves according to protocol for each sample and perform chemical specific washes after each sample type.

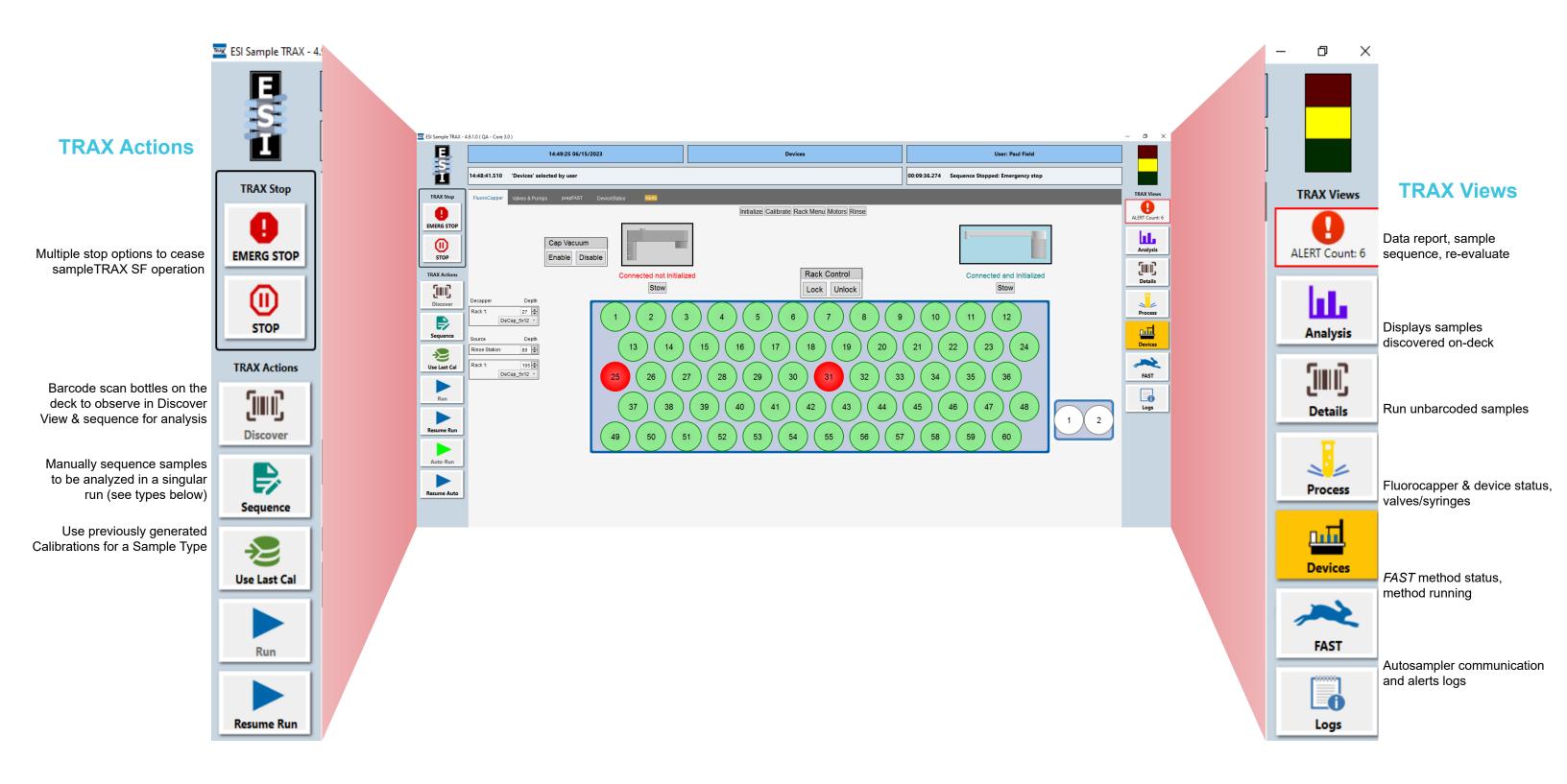
Perform H₂O₂ User Specified Wash

2c) Select Desired Sequence

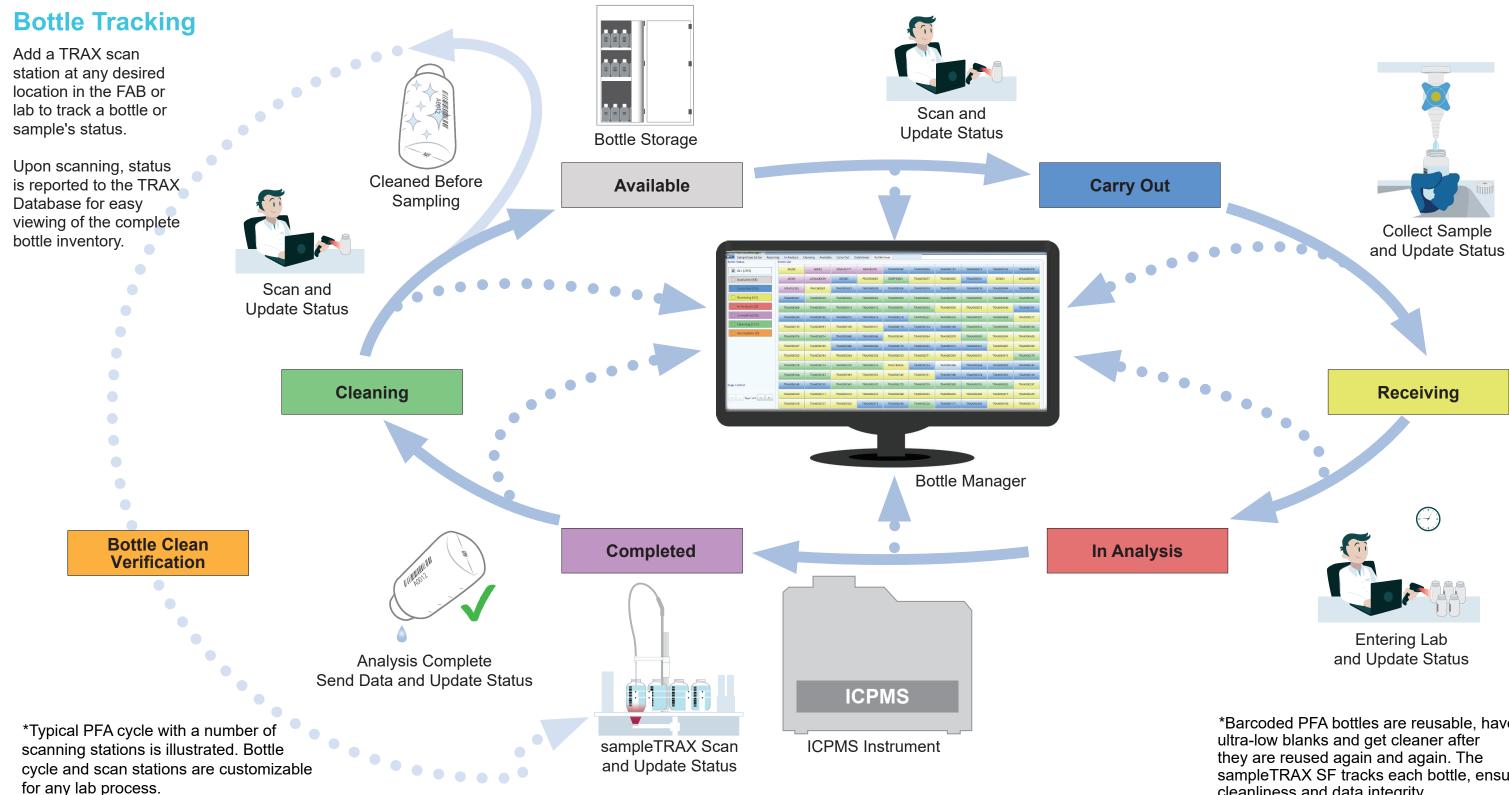
Run Samples


3) Run samples, acquire data and calculate results for reporting to sampleTRAX SF database

sampleTRAX SF automatically prepares desired calibration curve and samples for analysis.


As each chemical is prepared and injected, sampleTRAX SF triggers the ICPMS to acquire data and imports raw intensities.

Raw intensities are:


- Associated with TRAX ID
- Used to calculate concentrations
- Stored in database

sampleTRAX SF (Touch Screen)

Tracking a Typical Bottle Cycle

*Barcoded PFA bottles are reusable, have sampleTRAX SF tracks each bottle, ensures cleanliness and data integrity.

Bottle Manager: Tracking and History

Scan stations update the database in real time allowing the bottle manager to instantaneously provide a snapshot of every bottle's status.

Bottle Tracking

Select "ALL" to view the status of the entire bottle inventory as a color-coded grid.

Quantity of bottles is indicated with (##) in each of the seven color-coded stages.

Bottle History

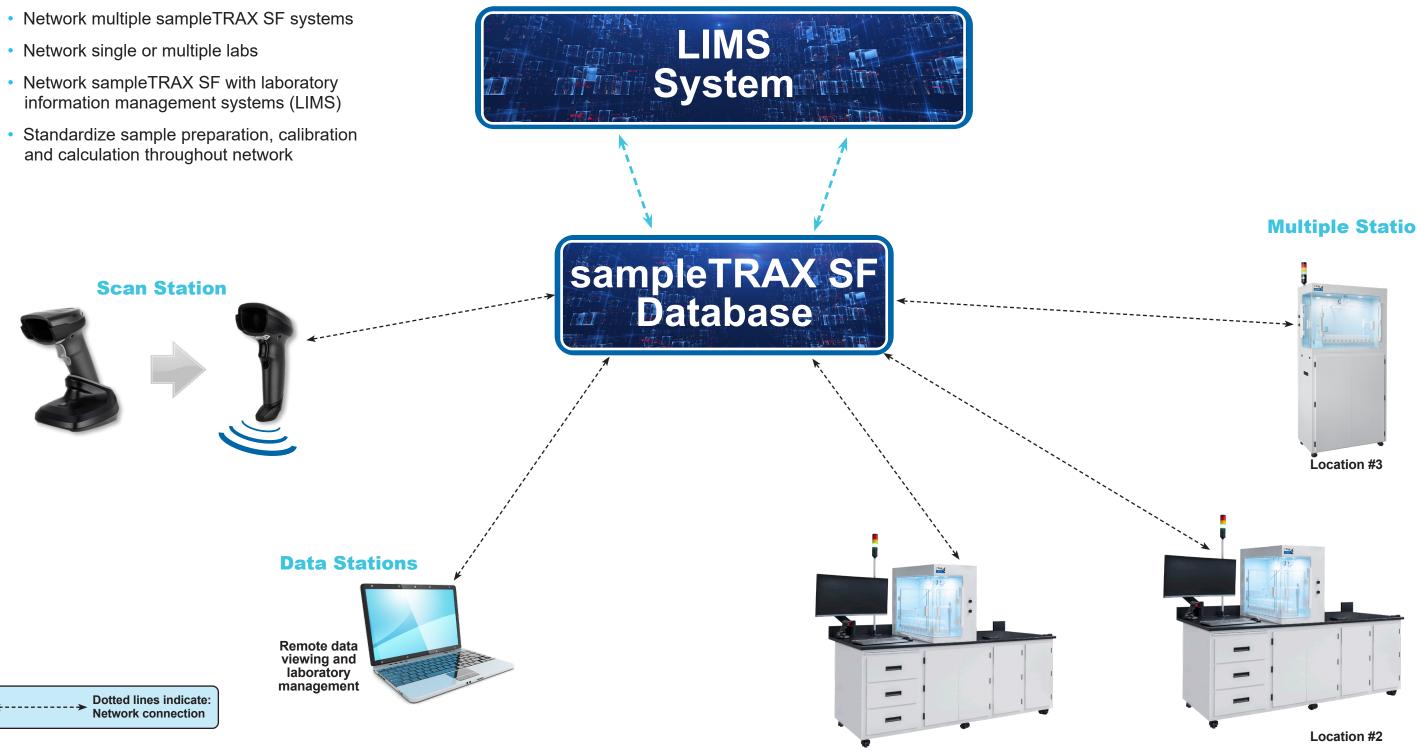
Click on the TRAXID to view its complete history.

- Status
- Sample type
- Purpose
- Concentrations

250 mL bottle

MPLETRAX DataManager					-					
SampleType Editor Receiving Bottle Status	g In Analysis C Bottle List	leaning Available	e Carry Out D	ataViewer Bottle	/iewer					
ALL (283)	A0280	A0092	MSATEST32	MSATEST81	TRAX000090	TRAX000006	TRAX000157	TRAX000073	TRAX000162	TRAX00007
Available (48)	A0281	AY3AA00029	000002	PFA25B0060	500PF00001	TRAX000057	TRAX000002	TRAX000001	000001	AY3AA0002
Carry Out (51)	MSATEST83	PFA25B0001	TRAX000021	TRAX000021 TRAX000038		TRAX000039	TRAX000052	TRAX000019	TRAX000044	TRAX00004
Receiving (61)	TRAX000027	TRAX000029	TRAX000032	TRAX000045	TRAX000053	TRAX000042	TRAX000059	TRAX000050	TRAX000049	TRAX00003
📄 In Analysis (0)	TRAX000068	TRAX000054	TRAX000014	TRAX000016	TRAX000051	TRAX000056	TRAX000036	TRAX000023	TRAX000046	TRAX00020
Completed (6)	TRAX000224	TRAX000196	TRAX000215	TRAX000219	TRAX000218	TRAX000227	TRAX000216	TRAX000197	TRAX000208	TRAX0002
Cleaning (117)	TRAX000135	TRAX000091	TRAX000109	TRAX000121	TRAX000115	TRAX000134	TRAX000149	TRAX000123	TRAX000094	TRAX00010
Incomplete (0)	TRAX000076	TRAX000074	TRAX000060	TRAX000066	TRAX000041	TRAX000064	TRAX000070	TRAX000063	TRAX000394	TRAX00040
	TRAX000397	TRAX000399	TRAX000382	TRAX000386	TRAX000376	TRAX000303	TRAX000315	TRAX000321	TRAX000287	TRAX0002
	TRAX000305	TRAX000294	TRAX000264	TRAX000258	TRAX000253	TRAX0002X1	TRAX000295	TRAX000301	TRAX000313	TRAX0002
	TRAX000278	TRAX000274	TRAX000310	TRAX000316	PFA25B0006	TRAX000354	TRAX000366	TRAX000384	TRAX000365	TRAX0003
	TRAX000364	TR4X000383	TRAX000381	TRAX000363	TRAX000345	TRAX000351	TRAX000380	TRAX000374	TRAX000362	TRAX00033
Page Control	TRAX000349	TFAX000355	TRAX000361	TRAX000367	TRAX000373	TRAX000379	TRAX000385	TRAX000391	TRAX000392	TRAX0002
<< <- Page 1 of 2 -> >>	TRAX000309	TRAX000311	TRAX000312	TRAX000270	TRAX000288	TRAX000293	TRAX000292	TRAX000285	TRAX000277	TRAX00032
	TRAX000328	TRAX000327	TRAX000325	TRAX000273	TRAX000290	TRAX000228	TRAX000177	TRAX000182	TRAX000188	TRAX0002

Clicking a TRAXID opens the bottle history window which shows the complete history of a bottle in the TRAX system including analytical data.


TRAX ID	Status	Sample Type	User	Datetime	Protocol	Purpose	Line	Sampling Point	Comments
MSATEST32	Completed	Validation	ESI\AgilentICPMS	2019-01-29 11:37:44	Semiconductor				
MSATEST32	In Analysis	Validation	ESI\AgilentICPMS	2019-01-29 11:03:01	Semiconductor				
MSATEST32	Receiving	Validation	ESI\AgilentICPMS	2019-01-29 10:59:35	Semiconductor				
MSATEST32	Carry Out		ESI\AgilentICPMS	2019-01-29 10:56:43					
MSATEST32	Available		ESI\AgilentICPMS	2019-01-29 10:53:07					
MSATEST32	Cleaning		ESI\AgilentICPMS	2019-01-29 10:46:37					
MSATEST32	Completed	Validation	ESI\AgilentICPMS	2019-01-29 09:42:04	Semiconductor				
MSATEST32	In Analysis	Validation	ESI\AgilentICPMS	2019-01-29 09:07:18	Semiconductor				
MSATEST32	Completed	Validation	ESI\AgilentICPMS	2019-01-28 18:25:44	Semiconductor				
ASATEST32	In Analysis	Validation	ESI\AgilentICPMS	2019-01-28 17:50:13	Semiconductor				
ASATEST32	In Analysis	Validation	ESI\AgilentICPMS	2019-01-28 17:47:11	Semiconductor				
MSATEST32	Receiving	Validation	ESI\AgilentICPMS	2019-01-28 17:37:20	Semiconductor				

TraxId	SampleType	Device	DateTime	Standard	Na	Mg	N	К	Ti	v	Cr	Fe	Ni	Со
MSATEST32	Validation	2	1/28/2019 5:56:42 PM	std-0	0.184	0.001	0.002	0.004	0.002	0.001	0.056	0.002	0	0
MSATEST32	Validation	2	1/29/2019 9:13:03 AM	std-0	0.139	0.108	0.124	0.042	0.108	0.016	0.212	0.113	0.041	0.111
1														

Close

Flexible, Customizable sampleTRAX SF Networking

Automate the whole lab by incorporating multiple scanning and analytical stations

Location #1

Multiple Stations

Full System at a Glance

Racks and Vials

Features and Benefits

Sample Identification

- Barcode scanning accesses information including:
- Sample type
- Sample Information (Line, sampling point, name, etc.)
- Method of standardization and analysis

Ultra Pure

- Ultra-clean
- <1 ppt semiconductor metals
- Automated matrix matched MSA or external calibration
- Analytical stations for ICPMS instruments

Laboratory Automation

- Bottle tracking
- Bottle history (cleaning, sample, chemical, analysis, concentration)
- Chemical grouping
- Chemical specific rinse function per chemical
- Customized network, bottle cycle

		conductor Chemic vel with sampleTF	
Acids	Bases	Organics	Chemical Mixes
98% H ₂ SO ₄	$22\% \text{ NH}_4 \text{OH}$	IPA	SC-1
89% H ₃ PO ₄	2.38% TMAH	PGMEA/PGME	SC-2
70% HNO ₃	25% TMAH	Photoresist	BOE
49% HF	КОН	NMP	DSP
35% HCI		Butyl Acetate	
30% H ₂ O ₂		Cyclohexanone	
SPM			
FPM			
DHF			
Etchant			
Others			

How it Works

sampleTRAX SF Analytical station automatically:

- 1. Scans bottles
- 2. Groups samples by chemical type
- 3. Analyzes grouped chemicals in a user-defined order
- 4. Performs wash method specific to each chemical type after each group is analyzed
- 5. Generates and reports data

All semiconductor pure chemicals can be analyzed using sampleTRAX SF. This

table contains only a

partial list of common

chemicals.

Barcoded Bottles and Vials for Fluorocapper

sampleTRAX SF Automatic Bottle Opening System with Fluoronetic Sampling

sampleTRAX dual-axis Flurocapper system

250 mL bottle

Vial/Bottle P/N	Volume	OD	Position	Locking Rack PN				
TXV3-60	60 mL	30 mm	60	TRX-LR-60-60				
TXV3-100	100 mL	48 mm	27	TRX-LR-27-100				
TXV3-250	250 mL	62 mm	27	TRX-LR-27-250				

Locking Racks

Shown with Locking Rack TRX-LR-60-60

TXV3-100 100 mL vial

60 mL vial

Contact us by phone at 402.991.7800 or by e-mail at sales@icpms.com. Our scientists and engineers are available to answer your questions related to elemental analysis. We are pleased to provide our customers complimentary analytical advice from our on-staff chemists.

© Elemental Scientific | 7277 World Communications Drive | Omaha, NE 68122 Tel: 402-991-7800 | sales@icpms.com | www.icpms.com